233 research outputs found

    Digital Photography - How Long Will It Last

    Get PDF
    Permanence issues for digital photographs arise in three different areas. First, the materials used for digital hard copies should preferably be as permanent as the conventional photographic materials. Longevity of digital hard copy materials is affected by the stability of the material and the storage conditions. Secondly, the digital files that are the counterpart of the conventional negatives need to be readable not only on various systems and platforms today but also in the future. Third, the encoding of digital images should be such that any improvement in processing algorithms and display/output technologies can be applied in future image workflows. The safe keeping of digital data requires an active and regular maintenance of the data. This paper discusses encoding issues for archival images and strategies to make image preservation happen for digital photograph

    Developing a Scalable Benchmark for Assessing Large Language Models in Knowledge Graph Engineering

    Full text link
    As the field of Large Language Models (LLMs) evolves at an accelerated pace, the critical need to assess and monitor their performance emerges. We introduce a benchmarking framework focused on knowledge graph engineering (KGE) accompanied by three challenges addressing syntax and error correction, facts extraction and dataset generation. We show that while being a useful tool, LLMs are yet unfit to assist in knowledge graph generation with zero-shot prompting. Consequently, our LLM-KG-Bench framework provides automatic evaluation and storage of LLM responses as well as statistical data and visualization tools to support tracking of prompt engineering and model performance.Comment: To be published in SEMANTICS 2023 poster track proceedings. SEMANTICS 2023 EU: 19th International Conference on Semantic Systems, September 20-22, 2023, Leipzig, German

    Assessing the impact of the physical properties of industrially produced carbon nanotubes on their interaction with human primary macrophages in vitro

    Get PDF
    Currently it is not fully understood how carbon nanotubes (CNTs) may affect human health. Despite this, CNTs are produced at a tonne mass scale yearly. Due to their large production and intended use within a variety of applications it is imperative that a clear understanding of the hazard potential of CNTs is gained. The aim of this study therefore was to assess the impact of five different industrially produced CNTs which varied in their physical properties on the viability of human monocyte derived macrophages (MDM), and subsequently, at sub-lethal concentrations (0.005-0.02 mg/mL), their ability to cause oxidative stress and a pro-inflammatory response in these important immune cells over a 24-h period. None of the CNTs caused significant cytotoxicity up to 0.02 mg/mL after 24 h. Only the long multi-walled CNTs (MWNCTs) caused a significant, dose-dependent (0.005-0.02 mg/mL) reactive oxygen species production, whilst bundled MWCNTs showed a significant tumor necrosis factor alpha release after 24 h exposure at 0.02 mg/mL. No effects were observed for either tangled MWCNTs or short MWCNTs. It can be concluded from the findings of the present study that the industrially produced CNTs studied can cause hazardous effects in vitro that may be associated with their physical propertie

    Ultrathin ceramic membranes as scaffolds for functional cell coculture models on a biomimetic scale

    Get PDF
    Epithelial tissue serves as an interface between biological compartments. Many in vitro epithelial cell models have been developed as an alternative to animal experiments to answer a range of research questions. These in vitro models are grown on permeable two-chamber systems; however, commercially available, polymer-based cell culture inserts are around 10 μm thick. Since the basement membrane found in biological systems is usually less than 1 μm thick, the 10-fold thickness of cell culture inserts is a major limitation in the establishment of realistic models. In this work, an alternative insert, accommodating an ultrathin ceramic membrane with a thickness of only 500 nm (i.e., the Silicon nitride Microporous Permeable Insert [SIMPLI]-well), was produced and used to refine an established human alveolar barrier coculture model by both replacing the conventional inserts with the SIMPLI-well and completing it with endothelial cells. The structural–functional relationship of the model was evaluated, including the translocation of gold nanoparticles across the barrier, revealing a higher translocation if compared to corresponding polyethylene terephthalate (PET) membranes. This study demonstrates the power of the SIMPLI-well system as a scaffold for epithelial tissue cell models on a truly biomimetic scale, allowing construction of more functionally accurate models of human biological barriers

    Scientific Reports / The tactile window to consciousness is characterized by frequency-specific integration and segregation of the primary somatosensory cortex

    Get PDF
    We recently proposed that besides levels of local cortical excitability, also distinct pre-stimulus network states (windows to consciousness) determine whether a near-threshold stimulus will be consciously perceived. In the present magnetoencephalography study, we scrutinised these pre-stimulus network states with a focus on the primary somatosensory cortex. For this purpose participants performed a simple near-threshold tactile detection task. Confirming previous studies, we found reduced alpha and beta power in the somatosensory region contralateral to stimulation prior to correct stimulus detection as compared to undetected stimuli, and stronger event-related responses following successful stimulus detection. As expected, using graph theoretical measures, we also observed modulated pre-stimulus network level integration. Specifically, the right primary somatosensory cortex contralateral to stimulation showed an increased integration in the theta band, and additionally, a decreased integration in the beta band. Overall, these results underline the importance of network states for enabling conscious perception. Moreover, they indicate that also a reduction of irrelevant functional connections contributes to the window to consciousness by tuning pre-stimulus pathways of information flow.Julia Natascha Frey, Philipp Ruhnau, Sabine Leske, Markus Siegel, Christoph Braun, Nathan Weis

    Comparing Poor and Favorable Outcome Prediction With Machine Learning After Mechanical Thrombectomy in Acute Ischemic Stroke

    Get PDF
    Outcome prediction after mechanical thrombectomy (MT) in patients with acute ischemic stroke (AIS) and large vessel occlusion (LVO) is commonly performed by focusing on favorable outcome (modified Rankin Scale, mRS 0–2) after 3 months but poor outcome representing severe disability and mortality (mRS 5 and 6) might be of equal importance for clinical decision-making

    18F-Fluorodeoxyglucose Uptake Level-Based Lymph Node Staging in Oropharyngeal Squamous Cell Cancer - Role of Molecular Marker Expression on Diagnostic Outcome

    Get PDF
    Background: A prospective study was performed to assess standard uptake value (SUV)-level based 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) lymph node staging in 33 patients with oropharyngeal squamous cell cancer (OSCC) out of a total of 99 patients with head-and-neck squamous cell cancer (HNSCC) and the role of nodal molecular marker expression in diagnostic outcome prediction. Methods: Preoperative nodal PET/CT staging in 123 lymph nodes was correlated with postoperative lymph node histology, which served as gold standard. Tissue samples were prepared for immunohistochemistry of the excised lymph nodes. Results: The negative and positive predictive values (NPV and PPV) of PET for correct lymph node assessment were 100% and 93%, respectively. There was a significant association between SUVmax and lymph node histology (p < 0.0001) and a significant linear correlation between SUVmax and nodal size (Pearson’s correlation coefficient r = 0.61336, p < 0.0001). The molecular marker E-Cadherin was significantly overexpressed in lymph node metastases (p < 0.0001). Benign lymph nodes showed significant 2-fold Bcl2 overexpression (p < 0.0001). However, the molecular marker expression profiles were inhomogeneous and did not allow valuable diagnostic outcome prediction. Conclusions: SUV level-based 18F-FDG-PET/CT lymph node assessment in OSCC still has to be considered as the most established and reliable staging tool. Lymph node molecular marker expression profiles need to be investigated further as they currently do not sufficiently contribute to therapy decision-making

    Benchmarking ChatGPT-4 on ACR Radiation Oncology In-Training (TXIT) Exam and Red Journal Gray Zone Cases: Potentials and Challenges for AI-Assisted Medical Education and Decision Making in Radiation Oncology

    Full text link
    The potential of large language models in medicine for education and decision making purposes has been demonstrated as they achieve decent scores on medical exams such as the United States Medical Licensing Exam (USMLE) and the MedQA exam. In this work, we evaluate the performance of ChatGPT-4 in the specialized field of radiation oncology using the 38th American College of Radiology (ACR) radiation oncology in-training (TXIT) exam and the 2022 Red Journal gray zone cases. For the TXIT exam, ChatGPT-3.5 and ChatGPT-4 have achieved the scores of 63.65% and 74.57%, respectively, highlighting the advantage of the latest ChatGPT-4 model. Based on the TXIT exam, ChatGPT-4's strong and weak areas in radiation oncology are identified to some extent. Specifically, ChatGPT-4 demonstrates good knowledge of statistics, CNS & eye, pediatrics, biology, and physics but has limitations in bone & soft tissue and gynecology, as per the ACR knowledge domain. Regarding clinical care paths, ChatGPT-4 performs well in diagnosis, prognosis, and toxicity but lacks proficiency in topics related to brachytherapy and dosimetry, as well as in-depth questions from clinical trials. For the gray zone cases, ChatGPT-4 is able to suggest a personalized treatment approach to each case with high correctness and comprehensiveness. Most importantly, it provides novel treatment aspects for many cases, which are not suggested by any human experts. Both evaluations demonstrate the potential of ChatGPT-4 in medical education for the general public and cancer patients, as well as the potential to aid clinical decision-making, while acknowledging its limitations in certain domains. Because of the risk of hallucination, facts provided by ChatGPT always need to be verified

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes
    • …
    corecore